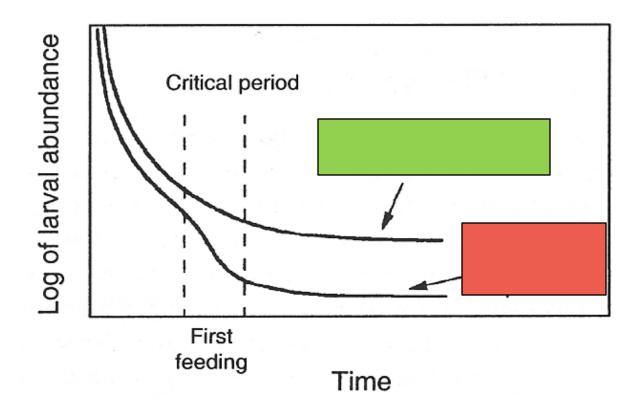
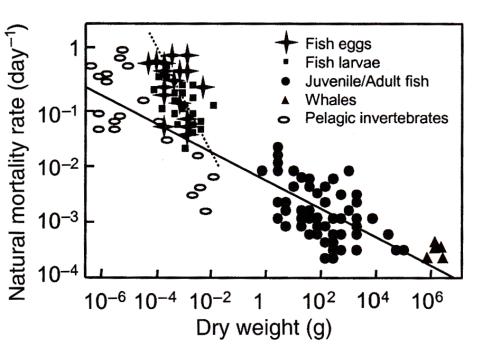

Mortality

LO: extrapolate effects of physical conditions on the mortality of marine fish species

Fecundity & Mortality



- high fecundity: egg production max.10¹²
- high mortality needed to meet ecosystem carrying capacity
- large range in mortality rates, mortality ∞
 age (overall mortality)
- short-lived 50-90%/year (anchovy), long-lived 10%/year (sharks, sturgeon)
- natural mortality rates **not** well known, often assumed constant (0.2)
- fishing mortality rates (f) can be 5x
 natural mortality rates (m) in commercial species


Jennings et al. 2001

Hjort's First Hypothesis

- differential mortality between years is a result of food availability at a critical stage during fish development

Natural Mortality and Weight

- m ∞ weight
- consequence of predation

 $M = 0.0053W^{-0.25}$

Overall slope = -.25

Fish eggs & larvae = -.85

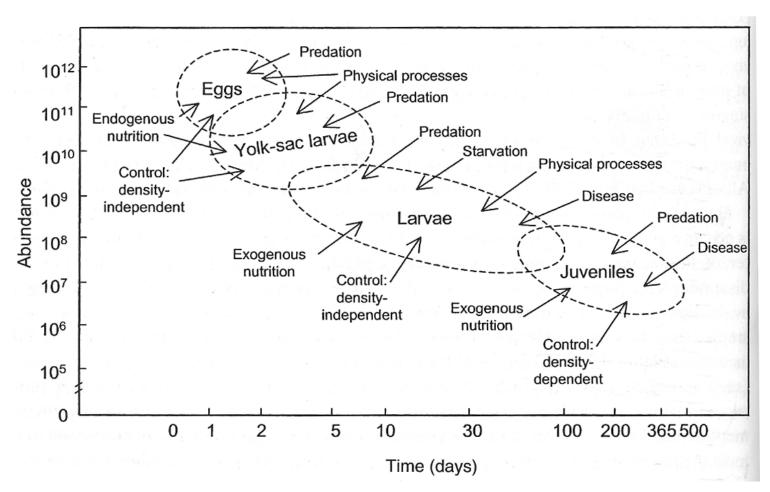
Table 3.1 The average relationship between M and W for five species of fishes during the larval stage.

Species	Relationship			
American shad Northern anchovy Bay anchovy Walleye pollock Striped bass	$M = 1.724W^{-0.392}$ $M = 1.073W^{-0.353}$ $M = 2.284W^{-0.318}$ $M = 3.874W^{-0.622}$ $M = 4.875W^{-0.424}$			

McGurk 1986

From Houde (1997).

Mortality & Growth


- mortality decreases with size and age
- marine mean: m = 0.24 (21.3% day⁻¹); freshwater mean: m = 0.16 (14.8% day-1).
- Why marine higher? smaller average size

Example

Marine: 1 million larvae, m=0.24, larval duration=36 days Number of survivors? 180 = >99.9% mortality

Fresh: m=0.16, larval duration=20.7 days, 96.4%

Sources of Mortality

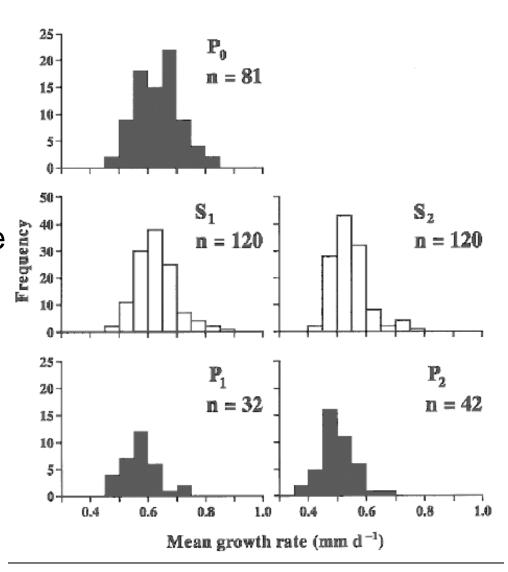
Which is most important?

Starvation (link to Mon lecture)

- Lab studies show massive mortality at end of yolk-sac stage at onset of first feeding.
- extension to natural environments lead to Critical Period Hypothesis (Hjort 1914, 1926)
- low mortality at this time also depends on availability of food: Match/Mismatch Hypothesis (Cushing 1972, 1974, 1990)
- but average conditions won't support larvae: Stable Ocean Hypothesis (Lasker 1978)
- also need high encounter rates to feed: microturbulence (Rothschild and Osborn 1988)

How Important is Starvation?

- point of no return differs among species
- poor condition leads to increased risk of predation
- element of competition but not well documented
- overwinter mortality of smaller individuals

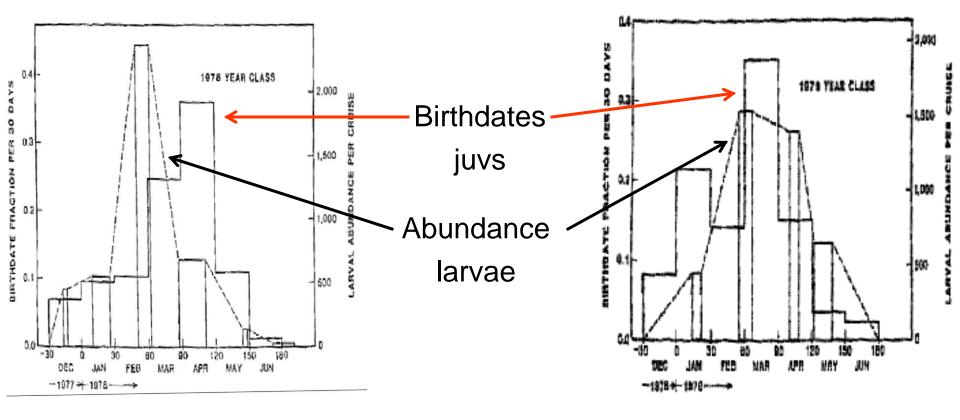

Predation

Slower-growing Japanese sardine larvae were more vulnerable to predators than faster-growing larvae.

Collected live larvae and larvae in guts of predators. Analyzed otoliths to determine growth rate prior to capture or predation.

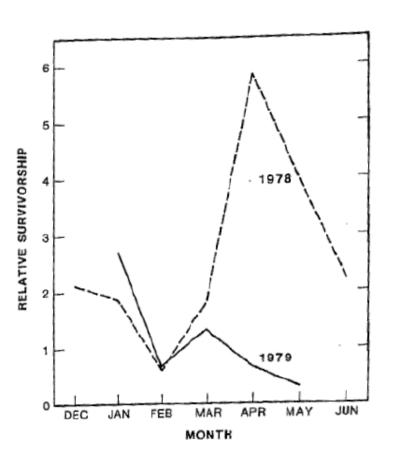
P = from predator stomach

S = survivor



Takasuka et al. 2003

Survival: Egg to Larvae


Hatchdate Frequency Distribution (HFD): compare HFD's to identify larval survival windows, then infer favorable biotic and abiotic conditions within season

Example: anchovy birth date distributions of juveniles with those inferred from collections of 2.6 - 5.1mm larvae (~hatch to 1st feeding)

Survival: Egg to Larvae

Anchovy survival from egg to ~ recruitment greater for eggs spawned in late spring 1978

- water stability and larval transport unimportant
- variation in year class strength was related to survival from early larva to juvenile (6-12 months old)

Methot 1983

Growth & Mortality

	growth	aneous 1 rate ^a ⁻¹)	Larval stag duration ^b (d		Instantaneous mortality coefficient	Number of survivorse		Ratio
Species G_L G_U	G_U	t_L	t_U	(d-1)	N_L	N _U	$N_U:N_L$	
Bay anchovy	0.15	0.35	50	21	0.18	123	22,823	185.6
Atlantic herring	0.03	0.10	173	52	0.04	988	124,930	126.4
Striped bass	0.07	0.20	64	22	0.16	36 .	29,599	822.2
French grunt	0.24	0.41	20	12	0.16	40,762	146,607	3.6
Atlantic cod	0.05	0.15	112	37	0.08	128	51,819	404.8

 $N_{11} = \#$ survivors predicted upper; $N_{1} = \#$ of survivors predicted lower

Take Home Message: modest change in growth or mortality rates can have a large, cumulative effect on survival

^a G_L = lowest probable rate; G_U = highest probable rate. ^b T_L = larval stage duration predicted for G_L ; T_U = larval stage duration predicted for G_U . ^c N_L = number of survivors predicted for G_L ; N_U = number of survivors predicted for G_U .

Stage-based Effects of Mortality, Growth, & Duration on Recruitment

		Effect on recruitment (age-1)				
Species	Life stage	Mª	G ^b	t ^c		
All species	Egg Yolk-sac larva	Small Small	Small Small	Small Small		
Bay	Larva	Large	Large	Large		
anchovy	Juvenile	Moderate	Moderate	Moderate		
Atlantic	Larva	Moderate	Moderate	Moderate		
herring	Juvenile	Moderate	Moderate	Moderate		
Striped	Larva	Moderate	Large	Moderate		
bass	Juvenile	Moderate	Moderate	Small		
French	Larva	Moderate	Moderate	Moderate		
grunt	Juvenile	Large	Large	Large		
Atlantic	L arva	Moderate	Moderate	Moderate		
cod	Juvenile	Moderate	Moderate	Moderate		

- sensitivity analysis (± 25%) of assumed mortality, growth, and stage duration on age-1 recruitment
- species differ
- egg and yolk-sac stages less important than larval and juvenile

TABLE 10.—Potential effects on age-1 recruitment of 25% increases or decreases in stage-specific mortality rates, growth rates, or stage durations for five species in the egg, yolk-sac larval, larval, or juvenile stages. The

M – mortality, G – growth, t - duration

Stage-Based Environmental Effects

Walleye Pollock, Bering Sea: GAM results

Tow-based

Time-based	(annual)
------------	----------

	Egg	Yolksac	Preflexion	Late	Juvenile
Year	3.4	5.0	7.4	10.0	9.2
Location	2.5	1.3	1.1	1.4	3.2
Day of year	4.9	5.1	4.8	7.9	0.7
Temperature	0.6	0.9	1.9	1.7	1.1
Wind speed	1.0	1.0	n. sig.	0.9	n. sig.
Zooplankton	n/a	n/a	0.8	0.2	0.2
Salinity	1.3	n. sig.	n. sig.	n. sig.	n. sig.
r ²	0.543	0.229	0.403	0.551	0.154
% Deviance	51.2	28.8	44.8	59.3	41.3
# Tows	1393	1393	1393	1479	1479

	Egg	Yolksac	Preflexion	Late	Juvenile
SSB	7.1	5.0	0.7	n. sig.	n. sig.
Temperature	0.9	2.8	8.2	16.0	8.0
Mixing	2.6	0.4	n. sig.	5.4	8.8
Zooplankton	n/a	n/a	4.9	3.3	3.8
r ²	0.226	0.149	0.213	0.272	0.081
% Deviance	16.3	14.5	17.3	29.8	19.0
# Tows	1671	1671	1671	1902	1902
# Years	17	17	17	17	17

Rank Covariate Possible Included Weighted models models deviance Temperature 5 0.26 anomaly Zooplankton 3 3 0.20 biomass 0.17 Wind mixing 5 5 Year 0.16 3 SSB 0.16 5 DOY 0.11 5 0.04 Location 0.03 Temperature Wind speed 0.02 Copepods 0.01

% total deviance explained

- influence of T increased with stage
- winds influenced early stages

Smart et al. 2012

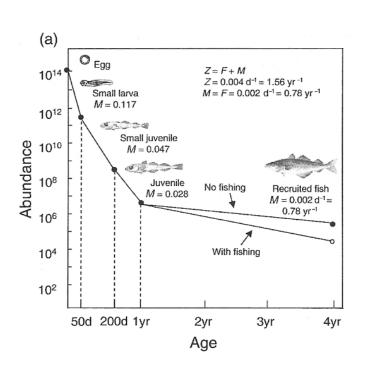
Calculating Mortality

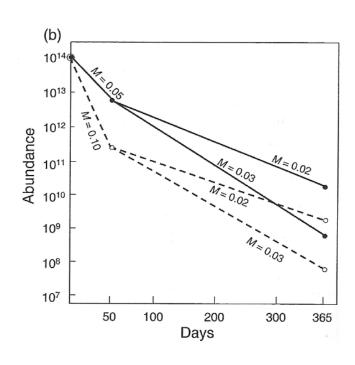
$$-dN = M \times N_t dt$$

$$-Mdt = \frac{1}{N_t} \times dN$$

N number of animals
M natural mortality rate
t age or time

$$N_t = N_0 \times e^{-M \times t}$$


Partition natural & fishing mortality


$$N_t = N_0 \times e^{-((M \times t) + (F \times t))}$$

$$N_t = N_0 \times e^{-Zt}$$
 Z = M+F

Determining Mortality: 1 Catch Curves

Survivorship
Catch Curves

- instantaneous mortality rate slope of catch curve (log_e (abund of survivors) vs age)
- critical parameter to Beverton & Holt model and cohort analysis
- poorly known due to gear selectivity, nets don't catch dead fish, data on escapees limited (juvs and adults only)
- resulting samples: plankton (eggs), juveniles, adults

Catch Curve Assumptions

- age-groups equally available to gear
- recruitment constant (if not use several years of data)
- survival rate uniform over ages (i.e. linear curve)

Ricker (1975) since M ∞ age, then linear curve represents balance of increasing M and increasing F in older fish

Supporting Evidence: catch curves for previously unexploited herring convex; similar to survivorship curves for unexploited freshwater populations

Method 2: Tag and Recapture

T fish tagged and returns at R₁ and R₂ (multiple intervals to avoid bias)

Survival rate: $S = R_2/R_1$

Instantaneous Total Mortality: $Z = -\ln(R_2/R_1)$ or $e^{-Z} = R_2/R_1$

Since mortality rate A = 1-S where A is proportion over years time

and exploitation rate u = R/T where u = FA/Z

Then F = uZ/A, since Z = F + M

Potential Sources of Error

- tag loss
- fish deaths due to tagging (initially or continuously)
- incomplete reporting by fishermen or observers
- nonrandom distribution of fish due to behavior: aggregation, emigration, immigration

Method 3: Catch/Effort (CPUE)

assume N ∞ c/f where c = catch, f = effort (i.e. yield/hours fished)
 M & q (catchability) constant after recruitment
 then knowing age composition: (c/f)₂/(c/f)₁ = N₂/N₁
 Since Z = - In(N₂/N₁) and Z = M + F, F = qf (F∞f)

Then $Z_i = M + qf = -ln ((c/f)_{i+1}/(c/f)_i)$

So What?

The regression between Z and f has slope q and intercept M